e-content for students

B. Sc.(honours) Part 2paper 3

Subject:Mathematics

Topic:continuity & differentiability of function of

real variable

RRS college mokama

Continuity of function at a point

Definition

The function f(x), defined over the interval I, is said to be continuous at $x = a \in I$ if it possesses a finite limit as x tends to a from either side always remaining in I and each of these limits is equal to f(a).

Thus f(x) is continuous at x = a if

(i) f(x) is defined at x = a and

(ii)
$$\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = f(a)$$

i.e.
$$f(a + 0) = f(a - 0) = f(a)$$

i.e. limit from right = limit from left = value of the function.

If a is an end point of the interval I of definition of f(x) then one of the left-hand limit or right-hand limit exists. In that case, one that exists should be equal to f(a).

Thus if a is a left-end point of the interval I then f(x) is continuous at x = a if $\lim_{x \to a+0} f(x) = f(a)$ and if a is a right-end

point of the interval I then f(x) is continuous at x = a if $\lim_{x \to a^{-0}} f(x) = f(a).$

This definition can be put in the distance form (or modulus form) as follows—

A function f(x), defined over the interval I, is said to be continuous at $x = a \in I$, if given $\epsilon > 0$ there exists a positive number δ such that

 $|f(x) - f(a)| < \epsilon$ whenever $|x - a| < \delta$ and $x \in I$ i.e. $f(a) - \epsilon < f(x) < f(a) + \epsilon$ whenever $x \in I$ such that $a - \delta < x < a + \delta$.

A function f(x) which is not continuous at x = a is called discontinuous at x = a.

Continuity of a function in a interval :Definition

A function f(x) defined over the interval I is said to be continuous in the interval $[a, b] \subseteq I$ if f(x) is continuous at all points x such that $a \le x \le b$.

Differentiability at a point

A function f(x) defined in the interval I is said to be

differentiable at $x = a \in I$ if $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists for all tendencies of x towards a so that x always remains in I.

In other words, the condition is that

ther words, the condition
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \text{ and } \lim_{h\to 0} \frac{f(a-h)-f(a)}{-h}$$

both exist and have the same definite value.

Thus the function
$$f(x)$$
 is said to be differentiable at $x = a$ if
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

$$= a$$
 definite number.

The value of the limit is called the derivative (differential co-efficient) of f(x) at x = a and it is denoted by

$$f'(a)$$
 or $Df(a)$.

A function f(x) defined in the interval I is said to be differentiable at $x = a \in I$, having the derivative l if given $\epsilon > 0$ there exists a number $\delta > 0$ such that

$$\left| \frac{f(x) - f(a)}{x - a} - 1 \right| < \epsilon$$
. whenever $|x - a| < \delta$ and $x \in I$.

The number l is the derivative of f(x) at x = a.

Theorem $\overline{}$ A function f is differentiable at x = a if and only if there exists a number l such that

$$f(a+h) - f(a) = lh + h.\eta$$

where η denotes a quantity which tends to 0 as $h \to 0$.

Proof. Let f be differentiable at x = a. Then there exists a number l such that $\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = l$.

Putting x = a + h,

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=l$$

$$\lim_{h\to 0}\left[\frac{f(a+h)-f(a)}{h}-l\right]=0.$$

$$\therefore \frac{f(a+h)-f(a)}{h}-l=\eta \text{ where } \eta \to 0 \text{ as } h \to 0.$$

 $f(a+h) - f(a) = h + h.\eta \text{ where } \eta \to 0 \text{ as } h \to 0.$ Thus it is the necessary condition.

As the argument is reversible, the condition is also sufficient.

Theorem If a function is differentiable finitely at a point, then it must be continuous at that point.

Proof. Let the function f(x) be differentiable at x = a.

Then by definition $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ $= \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h} = A \text{ (say)}.$

From $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = A$, it follows, by the definition

of limit, that, for a given number $\epsilon > 0$, we can find a number $\delta > 0$ such that

| So such that
$$\left| \frac{f(a+h)-f(a)}{h} - A \right| \le \epsilon$$
, for $|h| < \delta$ | i.e. $|f(a+h)-f(a)-Ah| \le \epsilon |h|$, for $|h| < \delta$. | But $|f(a+h)-f(a)|-|Ah| \le |f(a+h)-f(a)-Ah|$. | $|f(a+h)-f(a)|-|Ah| \le \epsilon |h|$. | $|f(a+h)-f(a)|-|Ah| \le \epsilon |h|$. | Hence $|f(a+h)-f(a)| \le |h| (|A|+\epsilon)$. | Now, if $h \to +0$, then $|f(a+h)-f(a)| \to 0$ and also if $|h| \to -0$, then $|f(a+h)-f(a)| \to 0$. | Thus $|f(a+0)| = |f(a)| = |f(a-0)|$ and $|f(a)| = |f(a)|$ is defined. So $|f(a)| = |f(a)| = |f(a)|$ is continuous at $|f(a)| = |f(a)|$.

Note. The converse of this theorem is not necessarily true, i.e. the condition of continuity is not sufficient for differentiability.

i.e. the continuity of a function is a weaker condition than (P U 1967 H) differentiability.

Let us illustrate this by an example.

Consider the continuity and differentiability of the function f(x) = |x| at x = 0.

(M U 1966 H, '78 A'85; Bh U '66 H; AMIE '81)

Test for continuity at x = 0.

Limit from right =
$$f(0 + 0) = \lim_{h \to 0} f(0 + h)$$

= $\lim_{h \to 0} |0 + h| = \lim_{h \to 0} |h| = 0$

And limit from left =
$$f(0-0) = \lim_{h\to 0} f(0-h)$$

= $\lim_{h\to 0} |0-h| = \lim_{h\to 0} |h| = 0.$

Since
$$f(0 + 0) = f(0 - 0) = f(0) = 0$$
,

so the given function is continuous at x = 0. Test for differentiability at x = 0.

$$\lim_{h\to 0}\frac{f(0+h)-f(0)}{h}=\lim_{h\to 0}\frac{|h|-0}{h}=1, \text{ as } h>0,$$

and
$$\lim_{h\to 0} \frac{f(0-h)-f(0)}{-h} = \lim_{h\to 0} \frac{|0-h|-0}{-h}$$

$$=\lim_{h\to 0}\frac{h}{-h}=-1.$$

Since these two limits are not equal, therefore the function is not differentiable at x = 0.